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Abstract

We provide simple general-purpose rules for agents to buy inputs, sell
outputs and set production rates. The agents proceed by trial and error
using PID controllers to adapt to past mistakes. These rules are com-
putationally inexpensive, use little memory and have zero-knowledge of
the outside world. We place these zero-knowledge agents in a monopolist
and a competitive market where they achieve outcomes similar to what
standard economic theory predicts.

1 Introduction
Agents are coordinated by the prices they set. Markets clear when prices bal-
ance correctly all possible economic information. Yet individual agents need to
set these prices with only some of that information. I present a model where
agents endogenously discover and set market-clearing prices using none of that
information.

I give agents simple decision rules that allow them, with no knowledge of
demand, supply or market structure, to solve for both competitive and monop-
olist prices and quantity. After a brief literature review in section 2, I explain
how agents trade in section 3 and 4 of this paper. I then expand them to make
the agents also produce and maximize profits in section 5 and 6 of this paper.

Agents using these rules are pure tinkerers. They adapt not by learning the
real model of the world but by assuming such a model is unknowable and then
proceeding by trial and error. Tinkering keeps these rules general-purpose.

I believe this methodology useful for two reasons. First, I provide a ready-
made set of decision rules that can be used in almost any other agent-based
model. There is no market structure or auctioneer feeding the prices to the
agent. I believe them perfect as a baseline to compare to more nuanced decision
rules.

Second, I provide a “rationality floor”: the minimum information and ratio-
nality needed for markets to work, like the Zero-Intelligence project Gode and
Sunder (1993). Unlike Zero-Intelligence, my rules apply to both trading and
production and do not depend on the very strict statistical assumptions that
doomed Zero-Intelligence Cliff et al. (1997).
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The lack of knowledge assumed in this model is extreme to the point of cari-
cature. This is by design. Firstly because the fewer informational assumptions I
make, the easier it is to plug-in these rules in other models. Secondly because I
can test the robustness of traditional partial equilibrium analysis to a complete
violation of standard rationality assumptions.

As Mäki (2008), but see also Nowak et al. (2011), I claim that the fundamen-
tal contribution of any model is to isolate causal mechanisms in a complicated
world. Here the mechanism allows firms to maximize profits and price goods
correctly just by monitoring the difference between what they produce and what
they sell.

In a more realistic model, firms would have more information and intelligence
but they would need to solve a higher dimensional problem trying to manage
not just production and prices but also customer satisfaction, labor relations,
geography, social networks and so on, mixing all causal mechanisms in a single
incomprehensible cacophony of parameters. That model would resemble reality
better but it wouldn’t be more useful.

2 Literature Review
I can categorize market processes along two axes. First whether the price vector
is provided exogenously or discovered endogenously. Second whether the process
allows trades to occur in disequilibrium before the equilibrium price is found.

Exogenous-equilibrium: the modeler solves for the market clearing prices and
assumes they are known to the agents. This requires agents to be as rational,
informed and computationally capable as the modeler who created them. Un-
fortunately the computational ability assumed is very high: even when equilib-
rium prices are known to exist, the utility is linear and the goods are indivisible,
approximating equilibrium prices is NP-hard Deng et al. (2002). More gener-
ally exchange equilibrium is a PPAD(Polynomial Parity Arguments on Directed
graphs)-complete problem Papadimitriou (1994).

Exogenous-disequilibrium: the modeler imposes a market formula that changes
prices in reaction to some aggregate variables like excess demand or productiv-
ity. Scarf’s paper on the subjectScarf (1960) is instructive in both explaining
the idea and giving examples where an equilibrium exist but this methodology
fails to find it. When finding an equilibrium is not an explicit goal, agent-based
models use this methodology: for example the wage-setting algorithm in Dosi
et al. (2010).

Endogenous-equilibrium: the agents play a game against one another (for
example a Bertrand competition) and choose the Nash equilibrium price and
quantity. This still requires agents both to have enough information about their
competitors to feed into their best response function and high computational
ability: finding Nash-equilibria is also PPAD-complete Chen and Deng (2006).

Endogenous-disequilibrium: agents interact and trade between themselves
without waiting or solving for equilibrium. The oldest market process model,
the Walras’s tatonnement, involved independent agents exchanging tickets at
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disequilibrium prices (see chapter 3 of Currie and Steedman (1990)). Agents
traded tickets rather than goods because trading goods at disequilibrium creates
wealth effects and path dependencies that invalidate welfare theorems; see Jaffe
(1967) for a discussion about Walras, see Foley (2010) for a modern treatment on
welfare theorems under disequilibrium. Modern disequilibrium models usually
don’t assume welfare theorems hold. I catalog these models by the market
structure used.

In a strictly bilateral market, agents are randomly matched and barter with
one another. There is no single market price but many trade prices. The pricing
strategy depends on the matching and bartering functions used. If agents can
compare their profitability with the rest of the population, like in Gintis (2007),
the prices offered by each agent can be driven by evolutionary methods. If an
agent only knows the characteristic of whom it is matched to, like in Axtell
(2005), market clears by letting every beneficial barter occur between all trader
pairs. Results can be driven by matching rather than bartering, as in Howitt
and Clower (2000), where fixed-price shops are built endogenously and agents
have to search for the right shops to exchange goods.

A more general market structure is the continuous double auctions with mul-
tiple buyers and sellers. My model belongs to this category. Here the two main
behavior algorithms are: Zero Intelligence Plus Cliff (1997) and the Gjerstad
and Dickhaut method Gjerstad and Dickhaut (1998). They represent the two
opposite views on adaptation: tinkering and learning. Zero Intelligence Plus
traders tinker with their markup according to the previous auction results while
Gjerstad and Dickhaut auctioneers first learn a probabilistic profit function and
then maximize it.

My algorithm is simpler. Like Zero Intelligence Plus, I set prices by tinkering
over previous errors. Unlike Zero Intelligence Plus, I use no auction-specific
information and so my algorithm is market-structure independent. Moreover
my algorithm can be expanded to direct production and maximize profits rather
than just trade. The tinkering and adjustment is simulated through the use of
Proportional Integral Derivative (PID) controllers.

While control theory is a staple of macroeconomics and PID controllers the
simplest and commonest of controls, to the best of my knowledge I am the first to
use PID control in economics. The closest paper to my approach is Ortega and
Lin (2004) where a PID controller is suggested for inventory control, equalizing
new buy orders to warehouse depletion. That is not an economic model as it
doesn’t deal with prices or markets. In the spirit of Bagnall and Toft (2006),
I judge my algorithm by testing it in a series of markets where the economic
theory identifies a clear optimum.

3 Zero-Knowledge Sellers
The seller is tasked to sell 100 units of a good every day. It has no information
on demand or competition and no opportunity to learn. All the agent can do
is set a sale price and wait. If at the end of the day it has sold too much, it
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will raise the price tomorrow. If it has sold too little, it will lower the price.
This is an elementary control problem. The seller has a daily target of 100 sales
and wants to attract exactly 100 customers a day. The seller has no power over
customers themselves and so it needs to manipulate another variable (sale price)
to affect the number of customers attracted. The seller doesn’t know what the
relationship between sale price and customers attracted is and so proceeds by
trial and error. The trial and error algorithm used by sellers in this paper is a
simple PID controller.

Given target y∗ (target sales) and process variable y (today’s number of
customers), the daily error is:

et = y∗t − yt (1)

Define ut as the policy (sale price). The seller manipulates the policy in order
to reduce the error. The true relationship between policy and error is un-
known, so the seller follows the general rule: “increase the policy when the error
is positive, decrease it when the error is negative”, which is the definition of
negative-feedback control Åström and Hägglund (2006).

The PID controller manipulates the policy as follows:

ut+1 = aet + b

∫ t

0

eτdτ + c
det
dt

(2)

Intuitively the policy is a function of the current error (proportional), all ob-
served errors (integral) and the change from the earlier errors (derivative). In
discrete time models (as the simulations in this paper) the equivalent formula
is:

ut+1 = aet + b

t∑
i=0

ei + c(et − et−1 (3)

There are four reasons as to why PID controllers are a good choice to simulate
agents’ trial and error. First, PID controllers assume no available information.
Agents using PID rules act only on the outcome of previous choices.

Second, PID controllers assume no knowledge on how the world works. The
PID formula contains no hint on how policy affects the error: there are no
demand or supply functions. The PID formula leads agents to tinker and adapt
without ever knowing or learning the “true” model.

Third, PID controllers make no assumptions on what the target should be.
The target in the PID formula is completely exogenous. The controllers work
regardless of how the target is chosen or how often it is changed.

Finally, PID controllers can complement other rules through feed-forwarding.
Feed-forwarding refers to using PID controllers on the residuals of other rules.
For example, take a more nuanced seller choosing its sale price by estimating a
market demand function from data. This estimation would provide an approx-
imate prediction of demand given the sale price. Still we could improve this
approximation by adding a PID controller to adjust the sale price by setting as
error the discrepancy between predicted and actual demand.
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For PID controllers to work, four assumptions need to be made on the market
in which they are employed. First, PIDs work by trial and error so the market
structure must allow agents to experiment. This means that policies (prices)
must be flexible. The stickier the policies, the slower the agent is at zeroing the
error.

Second, PID controllers work better when even small changes in policy have
some effects on the error. For Zero-Knowledge sellers the equivalent assumption
is facing a continuous demand function. This does not mean that discontinuities
automatically invalidate PID control and in fact all the computational exam-
ples in this paper have discrete and discontinuous demands. But PID perfor-
mance degrades with discontinuities resulting in more overshooting and slower
approach to the equilibrium prices.

Thirdly, PID controllers implicitly assume a downward sloping demand:
lower prices increase sales, higher prices decrease them. Zero-Knowledge sellers
would fail to price Giffen goods.

Finally, targets must be achievable. For example, finding the price to sell to
exactly n agents in a world with infinitely elastic demand is impossible. The
target “exactly n sales” is unreachable: the error will oscillate between n and
infinity, never reaching zero. Section 5.2 of this paper deals with how to set
targets endogenously.

4 Zero-Knowledge Sellers Example

4.1 Mathematical Example
It is possible to show the workings of a Zero-Knowledge seller without software.
Take a seller facing the unknown demand curve and tasked to sell 5 units of
good every day. This Zero-Knowledge seller uses a PID controller with the
parameters 0.01 for the proportional error, 0.15 for the integral and 0 for the
derivative. Table 1 tracks the trial and error process of the seller as it discovers
the right price (19) and sells the right number of goods.

Table 1: Non-Computational Example of a Zero-Knowledge Seller

Day et
∑t
i=0 et Price (ut) Quantity to sell (yt) Customers Attracted

1 · · 0 5 100
2 95 95 15.2 5 24
3 19 114 17.290 5 13.550
4 8.55 112.55 18.468 5 7.660
5 2.660 125.210 18.808 5 5.960
6 0.960 126.170 18.935 5 5.325
7 0.325 126.494 18.977 5 5.113
8 0.113 126.607 18.992 5 5.039
9 0.039 126.646 18.997 5 5.005
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4.2 Computational Example
A seller receives daily 4 units of a good to sell. There is a fixed daily demand
made up of 10 buyers. The first is willing to pay $90 or less for one good, the
second $80 and so on. The demand repeats itself every day. Agents trade over
an order book: the seller sets its price and all crossing quotes are cleared (while
supplies last). The trading price is always the one set by the seller. Prices can
only be natural numbers. The demand-supply schedule is shown in figure 1.

Figure 1: The example’s daily market demand and supply

The seller starts by charging a random price and then adjusts it daily through
its PID. The seller target is to sell all its inventory. Unsold goods accumulate.
The seller knows only how many customers it attracted at the end of the day.
There is no competition.

With this setup, any price between $51 and $60 (both included) will sell the
4 goods to the 4 top-paying customers. Figure 2 and figure 3 show the market
closing prices of two sample runs. In both cases the seller selects the "right"
price: $51.

Notice how, when the initial price is too high as in figure 3, the adjustment
initially undershoots. Undershooting is caused by the firm trying to dispose
leftover inventory from previous days; that is, while undershooting, the firm is
trying to sell its usual 4 daily goods plus what has not been sold before.

4.3 PID Parameter Sweep
The PID equation depends on three parameters. Parameter a for the propor-
tional error, b for the integrative error and c for the derivative one. In the
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Figure 2: The closing prices of a Zero-Knowledge seller sample run when the
initial random price is below the equilibrium

Figure 3: The closing prices and inventory of a Zero-Knowledge seller sample
run when the initial random price is above the equilibrium
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previous example the parameters were a = 0.25, b = 0.25 and c = .0001. Here I
vary the parameters in turn to show their effects on sellers’ behavior.

In figure 4 the a parameter varies. An increase in a makes the PID more
responsive to today’s error. This does not results in a faster approach to true
prices but only a more jagged price curve.

Figure 4: The effects of varying the a parameter of a Zero-Knowledge seller

In figure 5 the b parameter varies. An increase in b makes the PID more
responsive to the cumulative sum of errors. This results in a faster approach to
the true prices but it can cause fluctuation and overshooting.

Changing the c parameter (even increasing it by 100 times) has almost no
effect in this model. The derivative part of the PID becomes important to
smooth overshooting which isn’t a real issue to Zero-Knowledge sellers because
their baseline parameters are very small.

4.4 Computational Example with Demand Shifts
Agents using PID controllers adapt rather than learn. This keeps them working
when market conditions change. Here I replicate the Zero-Knowledge computa-
tional example of the previous sections but after 500 days 10 more buyers enter
the market. These buyers have a higher demand: the first willing to pay $190,
the second $180 and so on. The "right" price, after the shock, moves from $51
to $151.

Figure 6 shows the sale prices of a Zero-Knowledge seller. The seller quickly
finds the new price. Notice here that nothing was changed in the seller al-
gorithm. The PID was not told that the demand had shifted. There is no
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Figure 5: The effects of varying the b parameter of a Zero-Knowledge seller

"structural break" detection. Simply the PID reacts to a changing y (number
of customers) by increasing prices to hit the old target.

Figure 6: The sale prices of a Zero-Knowledge seller dealing with a demand
shock after 500 days
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5 Zero-Knowledge Firms
A firm is tasked to maximize its profits by producing and selling its output
daily. It has no information on customer demand, labor supply or competition.
The firm only knows its own production function. The firm has to decide daily
and concurrently the sale price of its goods, the wage of its workers and its
production quotas. The problem faced by the firm is harder for two reasons:
firstly, it has to trade in multiple markets at the same time and secondly, it is
a producer, not a passive receiver of endowment.

Zero-Knowledge firms maximize their profits by dividing the problem into
sub-components and solving each separately. There are two equivalent ways to
understand this division: by variables or by time as in figure 7.

Dividing the profit maximization problem by variables means recognizing
that the firm has two kinds of variables to set:

• Targets: how much to produce, how much input to buy, how much output
to sell, how many workers to hire. See figure 9

• Policies: how much to offer for inputs, how much to ask for outputs,
what wages to offer. See figure 8

Rather than setting them all together at once, we proceed in turn. We manipu-
late policies in order to achieve targets, and we set targets in order to maximize
the profit function.

The process of profit maximization of the Firm then is split in two classes
of operations:

• Control: change policies to achieve targets

• Maximization: change targets to achieve the objective.

The alternative and equivalent way to subdivide the profit maximization pro-
cess is by focusing on time. Here I take Hicks’s Leijonhufvud (1984) division of
time in economics between long run (both capital and labor are variable), short
run (labor is variable) and market days (production is fixed and unchangeable).
Control is the process of managing Hicksian market days: buying, hiring and
selling assuming production can’t be changed. Maximization is the process of
managing the short run: changing production rate to maximize profits.

The two processes integrate as a feedback loop. The maximization process
sets production targets for the controls. The controls, given time, discover the
price associated with those targets. The maximization then uses the discovered
prices to adjust to new targets and the loop restarts. This is a trial and er-
ror alternative to proper backward induction. Backward induction requires the
firm to try every possible target, discover the prices associated with each and
then choose the target that maximizes profits. Backward induction is exhaus-
tive learning, while the maximization used by the Zero-Knowledge firm is just
tinkering.

An example of how the two processes relate in time is shown in figure 10.
Control happens every day while maximization occurs less frequently to give
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Figure 7: The sale prices of a Zero-Knowledge seller dealing with a demand
shock after 500 days

control time to discover the right prices. In this example the firm revises its
production every 3 days. This frequency is arbitrary, and in fact when and how
one temporal phase ends and another begins has always been a weakness of
Hicks’s temporal model Currie and Steedman (1990). I will show in the Sec-
tion 5.2 how to avoid this arbitrariness and link the frequency of maximization
with the results from the control process.

5.1 Control
Control is the process of manipulating policies to achieve targets. In section 3
I used a PID controller to solve a univariate problem: manipulate one policy
to achieve one target. The Zero-Knowledge firm problem is multivariate as it
needs to manipulate the prices for all outputs and all inputs.

I solve this multivariate control problem by splitting it into multiple inde-
pendent univariate control problems. The Zero-Knowledge firm is composed of
many Zero-Knowledge traders each achieving a single target with their own PID
controller. I call each of these traders a firm’s department. This structure is ap-
propriate for object-oriented programming through simple object composition,
see figure 11.

In section 3 I showed how the PID controller solves the seller problem. Ta-
ble 2 expands the PID methodology to buying and hiring.
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Figure 8: Define control as the process of changing policies to achieve targets

Table 2: PID variables for each firm department

Component Variable y Target y∗ Policy ut
Purchases # of goods purchased # of input needed Price offered

Sales # of customers # of output produced Price demanded
Human Resources # of workers Target # of workers Wage offered

If the firm produces more than one kind of goods, then it will have more
than one sales department, each focusing on one kind of output.

I chose here to have departments targeting and dealing with flows rather than
stocks thus reducing the need for inventory management and so making PID
controllers simpler to use and less sensitive to the parameters I set. Focusing on
stocks is not impossible, but it is harder and requires more tuning of the a and
b parameters to keep the same level of accuracy Smith and Corripio (2005).

5.2 Maximization
Maximization is the process of finding the targets that maximize profits. From
section 5.1 I know that the firm uses its controls to discover the prices (and
therefore the profits) associated with a specific target. The maximization pro-
cess involves adjusting targets given the information discovered by the control.

For control problems, I used the PID algorithm to adjust policies. I can’t use
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Figure 9: Define maximization as the process of setting target to maximize
profits

Figure 10: An example of how control and maximization processes occur over
time. In this case a firm arbitrarily revise its production quota every 3 days,
hence maximization on day 3 and 6. The firm needs to buy inputs and sell
output every day, hence control every day of the week

a PID to adjust targets since the error (which in this case would be the distance
from maximum profits) is unknown (the firm doesn’t know what the maximum
profits are). Therefore I use a more rudimentary adjustment algorithm.

I proceed in three steps. First, I simplify the maximization problem from
multivariate (many targets to set together) to univariate. Second, I show the
adjustment algorithm used to choose this target over time. Third, I define how
much time the maximization algorithm should give to controls to discover the
prices associated with each target.

Mathematically I want to maximize the profit function Π(·) by setting the
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Figure 11: UML Diagram of a generic firm

vector targets y∗ :
max

y∗1 ,y
∗
2 ,...,y

∗
n

Π(y∗1 , y
∗
2 , . . . , y

∗
n) (4)

This is a multivariate maximization where each variable is the target of an
independent control process. I want to avoid having to explore the whole com-
bination space to find the right target vector, so I am going to condition the
targets among themselves to reduce this maximization to a single variable. The
main target the firm sets is the number of workers to hire L; this is equivalent
to setting the daily production quota f(L). I then set sales targets equal to
production (sell everything you make) and buying targets equal to daily inputs
(buy everything you need). The maximization problem becomes:

max
L

Π(L) (5)

I use algorithms 1 and 2 to adjust targets after observing profits. Both
algorithms are simple hill-climbers to show that no special maximization is
required. Both algorithms use little memory, choosing the new workers’ target
based only on the present and the previous one.

Algorithm 1 Simple One-Shot Hill Climber maximizer
1: L← 0 . Start by having no workers
2: loop
3: oldProfits← Π(L) . remember the current profits
4: L← L+ 1 . Increase worker size
5: wait . Wait for controls to adapt
6: if Π(L) < oldProfits then
7: L← L− 1 . Step back one, this is our final maximum
8: break
9: end if

10: end loop
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Algorithm 2 Forever Hill Climbing maximizer
1: L← 0 . Start by having no workers
2: d← 1 . We start with positive direction
3: loop
4: oldProfits← Π(L) . Remember the current profits
5: L← L+ d . Tweak the worker force
6: wait . Wait for controls to adapt
7: if Π(L) < oldProfits then
8: d← −d . Continue in the opposite direction
9: end if

10: end loop

Line 5 in algorithm 1 and line 6 in algorithm 2 expects the command "wait".
This is because controls need time to change policies to achieve the new targets.
The wait time can be arbitrary (e.g. one week, one month), but I found it more
natural to make it conditional on control achieving targets (e.g. a week after
all targets have been achieved). Conditional wait time has the advantage of
heterogeneity so that different firms with different controls can use the same
maximization algorithm at different frequencies. It is also how I endogenously
connect the Hicksian "market days" and "short run" that is the relative speed
with which agents change prices and change production targets.

Like with control, having Zero-Knowledge has drawbacks. There are two
major drawbacks with this maximization procedure: an economic problem and
a practical one.

Trial and error maximization is economically inefficient. Until the profit
maximizing targets are found, the firm spends time either under or over-producing.
This performance can influence the decision and profitability of suppliers, clients
and competitors which are also groping for the right targets. In a Zero-Knowledge
setting one agents mistakes can have externalities through the rest of the system.

This maximization is also susceptible to noise due to competition. Both
algorithm 1 and 2 are hill-climbers: they compare today’s profits with the pre-
vious profits. Implicitly I am assuming that if I were to revert back to the old
target I would earn the old profit. This stops being true when competitors are
concurrently changing their targets. The maximization algorithm thinks it is
maximizing Π(L) but it is actually maximizing Π(Li, L−i) with no control or
knowledge of opponents’ workforce L−i. Each agent decision shifts everybody
else’s profit function. As a setup it is similar to the "Moving Peaks Benchmark"
problem Blackwell and Branke (2006) except that peaks are shifted endoge-
nously by each agent rather than by stochastic shocks.

In spite of this I show in the competitive example that the resulting noise is
manageable. It stops agents from approaching any steady state, but it does not
stop them from approaching equilibrium prices.
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6 Zero-Knowledge Firm Examples

6.1 Mathematical Example
In this example I use no software. Prices and quantities are continuous. A Zero-
Knowledge firm hires workers from a market with daily labor supply L = 2w,
it has daily production function q = L, and faces the daily demand function
q = 100−5p. The firm is composed of two departments, a HR department hiring
workers and a sales department selling goods. The departments act daily, in
parallel and independently. The firm maximizes arbitrarily every 10 days using
algorithm 1.

For the first 10 days, the target number of workers is 1. Table3 shows the
HR PID process.

Table 3: Non-Computational Example of an HR department in a Zero-
Knowledge Firm

Day HR’s et HR’s
∑t
i=1 et Wages ut Workers to Hire y∗t Workers Hired’ yt Daily Production

1 - - 0 1 0 0
2 1 1 .250 1 5 .5
3 .5 1.5 .325 1 .650 .650
4 .350 1.850 .388 1 .775 .775
5 .225 2.075 .426 1 .853 .853
6 .148 2.223 .452 1 .904 .904
7 .096 2.319 .469 1 .937 .937
8 .063 2.382 .479 1 .959 .959
9 .041 2.423 .487 1 .973 .973
10 .027 2.450 .491 1 .982 .982

At the same time the sales department is using its own PID controller to
sell products. The target sales is equal to daily production (which is driven by
the HR department) plus leftover inventory. For this example I force initial sale
price to be 20.

Table 4: Non-Computational Example of a Sales department in a Zero-
Knowledge Firm

Day Sales’s et Sales’s
∑t
i=1 et Sale Price ut Daily Production Goods to sell y∗t Customers Attracted yt

1 · · 20 0 0 0
2 0 0 20 .5 .5 0
3 -.5 -.5 19.875 .650 1.150 .626
4 -.525 -1.025 19.769 .775 1.3 1.156
5 -.144 -1.169 19.759 .853 .996 1.205
6 .208 -.960 19.818 .904 .904 .908
7 .004 -.956 19.809 .937 .937 .955
8 .018 -.938 19.813 .959 .959 .934
9 -.025 -.963 19.806 .973 .998 .970
10 -.029 -.992 19.800 .982 1.011 .999

At the end of Day 10 the maximization algorithm is called and compares
profits with 0 workers (which is 0) against the profits with 1 worker target.
The firm paid .491 in wages to .982 workers, for a total cost of .482; the firm
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produced .982 goods sold at 19.8 a unit for a total revenue of 19.443. The firm’s
daily profits then are 18.961. Because increasing workers increased the profits
(from 0 to 18.961) the maximization algorithm sets the new worker target to be
2. 2 is set as target to the HR department from Day 11, restarting the loop.

The two departments are linked only through production: HR gathers the
input, the sales department sells its production. In this particular example, and
in the computational examples that follow, HR and production have priority
over sales and always happen before. This is not an important assumption, if
the sales department acts first the process is identical except that sales actions
are delayed by one day (what happened in day 3 will happen in day 4 and so
on).

6.2 A Monopolist Example
There is a single firm with two departments: a sales department and an HR
department. There is a fixed daily demand for goods as shown in figure 12.
The demand is step-wise and discrete. The firm also faces a step-wise discrete
supply curve made up of individual workers’ reservation wages. The firm must
pay a single wage to all employees which explains why the marginal cost curve
is steeper than the wage curve (the second worker has reservation wage $16, but
hiring him requires raising the first worker wage by $1, hence the marginal cost
is $17).

Figure 12: The daily demand faced by the monopolist, the wage curve and the
resulting marginal cost curve

Production is constant returns: each worker produces 1 unit of good every
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day. There is no capital, no fixed costs and no other inputs. Market is an order
book. Everybody places limit orders and crossing orders are automatically filled.
The trading price is always the price quoted by the seller. Prices and quantities
are always natural numbers. A rational monopolist maximizes profits by hiring
22 workers. The rational monopolist price is $79.

The Zero-Knowledge firm has none of this information. The firm has no
knowledge of being a monopolist either. Initially the wage offered is set to
0, the sale price is set to 100. The maximization used is algorithm 1. The
maximization wait time is endogenous: 3 weeks after the labor targets have
been filled by the HR department.

The firm’s daily production and sale price in a sample run are shown in
the figures 13 and 14. The Zero-Knowledge firm acts rationally in spite of no
knowledge, uncoordinated departments and rudimentary maximization.

Figure 13: Daily production in a sample run with a single firm

Notice in figure 14 the same temporary undershooting as in the Zero-Knowledge
seller example; this undershooting has a different cause: the sales department
PID has no foreknowledge of different changes in worker targets. In a way the
sales department is continually surprised by changes in production and its PID
controller has to catch up. It is the cost of using completely reactive control
and total departmental independence.

The results are only slightly different if I use algorithm 2. In this case the
firm forever oscillates between hiring 21, 22 and 23 workers ad libitum.
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Figure 14: Daily production in a sample run with a single firm

6.3 A Competitive Example
I replicate the market of the section 6.2 and add competition. In this example
there are 5 firms in the market. Nothing changes in the internal structure of the
firm. The firms have no knowledge of having competitors. Each firm follows
algorithm 2 to maximize. The competitive equilibrium price would be $72 and
the equilibrium daily production would be 29.

Figure 15 and figure 16 show a sample run. Unlike the monopolist case, the
results are more noisy and do not stabilize. Both the quantity traded and the
prices orbit around the equilibrium values, but they never settle.

I run the competitive model 5000 times changing only the random seed. I
stop each simulation after 5000 days and record final price and quantity. Fig-
ure 17 shows the distribution of results. While dispersed, all observations cluster
around the market demand function. This shows how with competitive noise,
control keeps performing well in keeping production and price linked even when
the maximization fails to find the profit maximization quantity. If I focus on
prices alone, as in figure 18 I can see that almost all the simulations with com-
petition have prices lower than than the monopoly setup.
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Figure 15: Daily prices in a sample run with 5 firms

Figure 16: Daily production in a sample run with 5 firms
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Figure 17: The 2D histogram of price-quantity results of 5000 sample runs of
the competitive scenario

Figure 18: The histogram of prices from 5000 competitive runs. The red bar rep-
resents the theoretical competitive prices, the blue bar the theoretical monopoly
prices
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7 Conclusion
The Zero-Knowledge agents I built solve the monopolist problem in simple mar-
kets perfectly but are inaccurate in perfectly competitive markets. This is in
part because the hill-climbing algorithms 1 and 2 react to past profits and
prices rather than current ones.

There are three assumptions that power the Zero-Knowledge traders that I
think should be addressed. First, I have decided that firm’s trial and error is
done over prices. Thanks to economics surveys by Blinder (1998) and Fabiani,
Silvia et al. (2006) I know that price flexibility is uncommon. Prices are more
like targets, changing perhaps three times a year.

Second, while Zero-Knowledge firms were created to show how agents can
bootstrap correct behavior without looking at prices, there is no reason to as-
sume agents are so autistic. Benchmarking is common-place in any industry.
A more realistic model would use more feed-forwarding and, more importantly,
more nuanced optimization.

Third, I assumed that demand reacts immediately to changes in prices. This
is in line with usual economic assumptions but it has the additional advantage
of avoiding the complicated design of controllers that deal with delays between
policy changes and results.

In spite of its simplicity, agents with this behavior can provide a simple
baseline on which to build other economic agent based models.
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