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Abstract I build a simple supply chain model with minimally rational agents
and show how sticky prices are necessary to achieve equilibrium. Stickiness is
necessary because prices take time to affect agents throughout the economy
and changing prices too frequently leads to noise and disequilibrium. Agents
are trial and error price makers. In single market economies they quickly
achieve equilibrium through flexible prices. In supply chains they instead gen-
erate bullwhip dynamics without ever even orbiting around the correct prices
and quantities. These agents are too simple to coordinate by centralizing in-
formation or any other standard supply-chain management strategy and are
therefore forced to rely on prices alone. Price stickiness then becomes necessary
and superior to flexible pricing and lets the economy achieve profit-maximizing
equilibrium both in monopolist and competitive markets.

Keywords Agent-based models; Nominal rigidities; Supply chains; Disequi-
librium; Microfoundations

1 Introduction

1.1 Motivation

As economists we see price flexibility as efficient and stickiness as an inferior
compromise imposed by adjustment costs. I build a simple model with no
adjustment costs where price stickiness is not only superior to flexible prices
but necessary to achieve equilibrium. The model findings hinge on two main
assumptions: delays to adapt to price changes and bounded rationality.

Consider an economy in disequilibrium where some goods are overproduced
while others are in short supply. Prices have to change to incentivate agents
to reallocate resources. What I focus on is how much time passes between the
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price changing and the agents reacting to it. The delay between a price chang-
ing and it having effect exists only with boundedly rational agents. Because
all-knowing agents would predict any disequilibrium and adapt preemptively,
a delay between a price changing and it having effect can only exist with
bounded rationality.

Agents in this paper are trial and error price-makers. They quickly find
equilibrium price and quantity when placed in a one-sector economy. When
placed in a two-sector supply chain however, prices spiral out of control This is
because firms downstream need time to adapt to a change in price upstream.
This delay feeds into the trial and error of the upstream firms fooling them
into thinking that prices are inelastic. To counter this inelasticity, upstream
firms try ever larger price changes eventually overshooting and undershooting
out of control. Sticky prices restore equilibrium by giving the time to agents
to see their actions’ full effect.

It is common to assume that prices can’t be away from equilibrium for
long. Traders would notice shortages or gluts and react by adjusting prices.
For example in Mankiw’s microeconomics textbook (Mankiw & Taylor, 2011)
page 82 reads:

’Suppose first that the market price is above the equilibrium price [...]
There is a surplus of the good: suppliers are unable to sell all they want
at the going price. [...] They respond to the surplus by cutting their
prices. Prices continue to fall until the market reaches the equilibrium.’

This kind of narrative is taken as a license to ignore disequilibrium altogether
and assume market-clearing prices will emerge (Conlisk, 1996). I instead make
explicit this adjustment process and show how it works well in simple markets
but not in supply chains. Price-stickiness is required for equilibrium to emerge
in supply chains. Rather than being a poor substitute for total flexibility, price
stickiness is necessary for agents to deal with a slowly adapting world.

1.2 Research Contribution

Here I tie together two separate academic literatures. The first is the ’bullwhip
effect’: the large swings in prices we observe in supply chains that cannot be
explained by changes in final demand (Baganha & Cohen, 1998). The second
is ’sticky prices’: the slowness in changing prices that we observe in macro-
economics in spite of evident changes in the final demand.

The operation research solution to bullwhip effects in supply chains is active
management by centralizing information (Chen, Drezner, Ryan, & Simchi-
Levi, 2000). The economy as a whole is a large supply chain, think input-output
tables (Leontief, 1966), however it is so large and dispersed that centralized
management is impossible. I show then that prices can coordinate the economy
with no other information as long as they are sticky.

While my paper generates and explains bull-whip effects, the main thrust
is on how to fix them when information is not available or cannot be processed.
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For this reason I use simple agents with very limited rationality. It allows me
to show how sticky prices are the method to coordinate supply chains and
have them reach equilibrium. Sticky prices require little rationality and little
information and are therefore perfect to manage the general supply chain that
is the entire economy.

1.3 Roadmap

This paper is split into three main parts. The first part goes from the literature
review in section 2 to section 4. In it I summarize and expand the Zero-
Knowledge methodology. First in section 3 I show how agents can price their
output through trial and error. I then show how, when there is a delay between
price setting and demand adjusting to it, the trial and error rule oscillates
away from equilibrium. Finally I show how price stickiness can recover the
equilibrium. In section 4 I add production: agents can set their own production
targets in order to maximize profits. Through marginal analysis agents are
capable of reaching both monopolist and competitive equilibria.

The second part, section 5-6, deals with supply chains. In section 5 I plug
the Zero-Knowledge traders into a supply chain. Because of the way the pro-
duction targets downstream are set, the firms upstream face delayed demands.
Again prices oscillate away from equilibrium unless prices are made sticky. In
section 6 I go through various market structures for the supply chain and show
how the results are robust to changes in market power.

The third part goes from section 7 to the conclusion. In this part of the
paper I cast off some of the assumptions I made in the previous sections. I
show how removing those assumptions create noisier results but the overall
outcome is the same: supply chains keep on achieving equilibrium given sticky
prices. I believe these sections are important as a robustness check of the
previous results. In section 7 I let agents discover on their own if they are in a
competitive or monopolist market. In section 8 I let agents set their own price
stickiness. Finally in section 9 I show how one should structure empirical work
around Zero-Knowledge traders.

The source code is available1 on an open-source MIT license. The simu-
lation is coded in Java and uses the MASON toolkit (Luke, Balan, Panait,
Cioffi-Revilla, & Paus, 2003). I have personally replicated the one-market ex-
amples contained in this paper by recoding them in Dart2 on MIT open-source
license. Moreover the one-market examples were replicated semi-independently
(I provided some clarifications and debugging but did no coding) as part of the
ABCE modelling platform (Taghawi-Nejad, 2013) in Python3. Both of these
replications do not restrict prices and quantities to be natural numbers like I
do in this paper.

1 As a git repository it is available here
2 The repository is available here
3 The repository is available here

https://github.com/CarrKnight/MacroIIDiscrete
https://github.com/CarrKnight/lancaster
https://github.com/DavoudTaghawiNejad/abce/tree/master/example/pid_controller
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2 Literature Review

There has always been a link between explicit price-making and price stickiness
in the Keynesian tradition: Okun (1981) justified sticky prices in the Hicksian
IS-LM model by claiming that ’in a world of price makers, rather than auc-
tioneers and price takers, it takes time and resources to change prices’. Rather
than assuming so however I here make this link explicit.

The agents in this paper are ’goal-oriented feedback mechanisms with learn-
ing’, Pickering (1995)’s definition of ’cybernetics’.

My paper shares some similarities with the Beer-Distribution game (Ster-
man, 1995). Both deal with supply-chains, both have agents that act by feed-
back and both result in noise and disequilibrium. But the similarities end
there. The fundamental difference is that my model has prices. In the beer
distribution game, each node of the supply chain is powerless to influence the
number of orders it receives, my firms can adjust their sale prices to throttle
their customers’ demand. Other components of the beer-distribution game are
missing: here there is no exogenous shock to demand, no delay in clearing or-
ders, no anchoring or ’wrongful mental simulation’(Sterman, 1989). The focus
is entirely on prices and disequilibrium.

My paper’s result also shares some superficial similarity with section 4.4
of ’Information Distortion in a Supply Chain’ (Lee, Padmanabhan, & Whang,
2004). In it the authors describe the strategy of ’Every Day Low Price’ where
manufacturers reduce the frequency of discounts and promotions in order to
stabilize supply chains. In both papers therefore rigid prices alleviate bullwhip
effects. The causal mechanisms of the two papers are very different however.
’Every Day Low Price’ keeps prices steady as a counter-measure to forward
and strategic buying downstream that are incentivized by discounts and pro-
motions. It is fundamentally a micro-economic result of managing other parties
expectations. My paper has no forward or strategic buying and focuses instead
on the steady prices coordinating low rationality agents in a low information
environment.

The most extensive empirical review on sticky prices is Klenow and Malin
(2010). The firm interviews by Blinder (1998) and Fabiani, Silvia et al. (2006)
are both literature surveys on price stickiness microfoundations and empirical
tests of which theory firms find more credible. Both highlight the importance
of returning customers’ goodwill (Okun, 1981), coordination between firms
(Clower, 1965) and long-term contracts.

My paper is most similar to Blanchard (1982). In both papers price inertia
is due to the desynchronization between firms in a supply-chain. While the
results are similar the causality is reversed. There production adapts instanta-
neously but prices are set slowly and asynchronously which generates inertia
within the supply chain. Here there is production inertia in the supply chain
so that while prices can be set quickly it is counterproductive to do so.

In sticky-information models (Mankiw & Reis, 2002) the lack of knowledge
alone can cause price-stickiness as information about shocks is expensive. The
difference between my paper and the sticky-information literature is on how
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information gathering is modeled. In the sticky-information literature infor-
mation gathering is a separate activity from trading: in the original Mankiw’s
paper a random proportion of firms receive information each day. In my pa-
per information gathering is a by-product of trading. Firms set prices and
see how many customers they attract; firms can only discover the demand by
experimentation. Sticky prices become necessary when there is a large delay
between running the experiment (setting a price) and seeing its result (changes
in behavior along the supply-line).

3 Zero-Knowledge Traders and Delays

In this section I introduce the Zero-Knowledge traders and explain how they
find the correct prices when selling a fixed daily inflow of goods. This trial
and error mechanism is used for the rest of the paper. I then break the Zero-
Knowledge pricing by adding arbitrary delays to how quickly the demand
adapts to changes in prices. I finally show how sticky prices can solve the
delays.

3.1 Trial and error pricing is effective when customers react immediately

Zero-Knowledge traders price their goods in a feedback loop. Every day a
trader receives q∗ goods to sell. In the morning, the trader sets sale price p
and during the day it attracts q paying customers. If at the end of the day
there are fewer customers than goods to sell, the trader will lower tomorrow’s
price. Defining the daily error as

et = qt − q∗t (1a)

et = Outflow− Inflow (1b)

et = Netflow (1c)

The trader adjusts tomorrow prices through a PI(Proportional Integrative)
controller rule:

pt+1 = aet + b

t∑
i=1

ei + p0 (2)

Where p0 is the initial random offset.
Start with a simple example: a price-maker agent receives 50 units of a

good each day to sell, that is q∗t = 50,∀t. It faces a fixed but unknown daily
demand curve qt = 101−pt. Imagine that the agent starts with random initial
price p0 = 80. The first day the trader attracts q0 = 21 customers and since
its target was 50 sales its first error is e0 = −29. The agent then plugs this
error in the PI controller formula:

p1 = a ∗ (−29) + b ∗ (−29) + 80
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Assuming a = b = 0.1 the agent sets p1 = 74.2. In this paper I allow only
natural prices, so that p1 is rounded to 74. The next day the seller attracts
q1 = 27. This generates the error e1 = −23 which can be plugged in the PI
controller to generate p2:

p2 = a ∗ (−23) + b(−29− 23) + 80

Figure 1 shows the simulated path generated by these parameters. The agent
quickly finds the correct price.

Figure 1: A sample run of a trader iteratively finding the correct prices when
having 50 units of goods to sell and facing the daily linear demand qt = 101−pt.
This trader is using a PI controller with parameters a = b = .1.

3.2 Trial and error pricing fails if there is a long delay between setting a new
price and it having effect

PI controllers simulate náıve trial and error pricing. As with all experimenta-
tion, PIs work better when trial results are informative and unambiguous. A
simple way to mislead the agents is to add a time delay δ between a price p
being set and the quantity demanded q adjusting to it.
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Take a delayed demand curve, that is the quantity demanded at time t is
a function of the price at time δ days before:

qt = f(pt−δ)

This delay is completely arbitrary and exogenous, I add it here to expose a
weakness of adapting prices through PI controllers. A more endogenous source
of delay is introduced in section 5.

Delays mean that even when the trader guesses the right price it takes
δ days to yield the right quantity. The trader then will move away from the
correct price because she thinks it is wrong. However the price is not wrong, it
is the delay that is causing a mismatch between inflow and outflow. Depending
on δ, the delay can slow down the approach to real prices (as in figure 2) or
prevent it entirely (as in figure 3).

Figure 2: The same trader of Figure 1 now faces demand qt = 101 − pt−10,
that is δ = 10. The trader takes longer to find the right price.

3.3 Sticky prices are a solution to the price delay

The simplest way to deal with delays is to slow down the trial and error loop
accordingly. If it takes a week for prices to have an effect, the trader can change
prices every week rather than every day. Effectively, sticky prices. An agent
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Figure 3: The same trader of figure 1 now faces demand qt = 101−pt−20, that
is δ = 20. The trader never finds the right price.

using sticky prices continues to follow the same PI formula as equation 2 but
does not activate it every day. Define the stickiness of an agent as s days, the
agent activates its PI controller to change prices each day with probability 1

s .
In other words s is how many days on average pass between one change of
price and another. This stochasticity is necessary to avoid creating spurious
artifacts in simulations with multiple agents as they would otherwise proceed
in lock-step.

Notice the significance of activating the PI controller only some days. The
PI controller is there for the agent to adapt prices when they are perceived
as wrong, that is when there is a non-zero error. By not activating the PI
controller at any given day I am forcing the agent to maintain wrong prices.
Why would it ever pay for an agent to keep an obviously wrong price? The
answer is that the price is perceived as wrong today but it might not be wrong
in the future. If the demand contains a delay, keeping prices constant allows
the true demand q associated with current price p to emerge.

As shown in figure 4 adding stickiness s = 20 to an agent’s pricing is enough
to get back to equilibrium. Alternatively the trader can keep changing prices
every day by smaller amounts so that the demand has time to catch up. This
would mean using the PI equation 2 with small a and b. This also works as
shown in figure 5
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Figure 4: Like in figure 3 δ = 20 but this time the trader adjusts her prices
only every 20 days (s = 20). Notice that the time between one price change
and the next is irregular, this is because there is a fixed 1

s chance of activating
the PI controller each day. The result is the same approach as figure 1 but in
a longer time frame.

I defined price stickiness s as the average number of days the agent waits
before activating its PI controller to change prices. Define timidity z as the
number dividing the baseline PI parameters (so a timidity of 10 with a baseline
of 0.1 means that the PI parameters a = b = .1

10 = .01). The PI formula in
equation 2 changes to:

pt+1 =

{
pt, with probability 1− 1

s
a
z et + b

z

∑t
i=1 ei + p0, with probability 1

s

(3)

The larger the z (with z > 1) the more cautious the controller becomes. This
is because the errors now get multiplied by a smaller number and therefore
have a smaller effect on prices.

Fix the demand delay δ to 50 (this is in order to better show the inter-
play between stickiness and timidity). Figure 6 shows which combinations of
timidity and stickiness achieve correct prices over 5 experimental runs. Define
the daily distance from the correct price as:

T∑
t=1

(pt − pe)2
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Figure 5: Like in figure 3 δ = 20 but here PI controller has a = b = .01, 10
times smaller than the original (that is z = 10).

Using the demand qt = 101− pt−50 the equilibrium price is pe = 51. Figure 7
shows for which combination the distance is minimized. That is which com-
bination of timidity and stickiness achieves the fastest convergence to correct
prices.

In this paper I will focus almost exclusively on stickiness s rather than
timidity z. Moreover s will be fixed and exogenous for most examples. However
I will show in section 8 how the endogenize s and let the firm set it on its own.

Agents working by trial and error benefit from acting slowly and timidly
whenever price changes take time to have an effect. Since there are no menu
costs, the agents are indifferent between adjusting the price often but timidly
or seldom but aggressively. The weakness of this section is that the delay is
arbitrarily fixed and exogenous. The delay will become endogenous as supply
chains are introduced.

3.4 We can reduce knowledge further with a minimum inventory buffer

One weakness of the error we feed to the PID controller is that equation 1
assumes netflow can go negative. If the seller manages to sell all its stock, she
must estimate how many more goods she would have been able to sell at that
price. This is unrealistic. An alternative is to hold a minimum inventory, as
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Figure 6: Run the model 5 times for 15000 market days with fixed PI param-
eters and speed but different initial prices. Controllers that are too fast (no
stickiness or timidity) or too slow (too much stickiness or timidity) fail in at
least some cases. Demand delay is 50 days

this allows the firm to sell more than what is produced in a day and so learn
whether the price is too low.

The advantage of having an inventory is that we can change the error we
feed in the controller from

et = Outflow− Inflow

to just

et = −∆Inventory

The disadvantage is that the seller must build up an inventory.

Remember that in this section the seller receives a fixed amount of goods q∗

every day. She then needs a strategy to stock up a sufficient level of inventory.
Define i∗ as the minimum buffer inventory level. The PI controller targets
0 sales as long as actual inventory is below i∗ and targets ∆Inventory = 0
otherwise. In other words inventory accumulation takes precedence. Excluding
the initial days of stocking up the dynamics of this controller are exactly the
same as those shown above. Traders will use inventory buffers for the rest of
the paper.
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Figure 7: Average sum squared distance over 5 simulations run. The minimum
distance is achieved by stickiness of 16 and timidity of 1. Only the successful
combinations from figure 6 are considered. Demand delay is 50 days

3.5 Smoothing prices through moving averages does not solve demand delays

I showed how demand delays cause prices to oscillate as in figure 3 and then
how stickiness and timidity can overcome such issues. Because the price oscil-
lation is very regular in the example shown, it might seem possible to avoid
dealing with stickiness and instead smooth the PI controller’s prices through
a moving average. This unfortunately does not work: moving averages do not
solve oscillations caused by demand delays.

Notice first that there are two variables we can smooth. Either smooth
the error et to feed into the PI controller or the policy pt that comes out of
it. In control theory, these are called respectively ’process variable filtering’
and ’controller output filtering’. Filtering et through an arithmetic moving
average makes the delay problem worse. This is because averaging out et with
previous values make the PI controller deal with a delayed version of its input.
The demand delay is what fooled the PI controller into oscillating its prices in
the first place and smoothing et increases the delay faced by the PI controller
and therefore the amplitude of its price oscillations.

Understanding why smoothing the PI output pt also has no positive ef-
fects help explain why stickiness and timidity work instead. Demand delays
mean that the error et fed into the controller does not accurately reflect the
effect of the price pt on the demand. Over time the errors et accumulate in
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the integrative part of the controller, that is b
∑t
i=0 et. It is the progressive

increasing and then unwinding of the integrative part that causes prices to os-
cillate. Stickiness fixes this by only updating the integral part approximately
every s days, timidity fixes this by dividing the effect of the integrative part
of the controller. Smoothing out the PI output instead has no effect on the
integrative controller; it slows down the output of the controller but not the
accumulation of errors in its integrative part. The PI controller has a sluggish
output but all this does is to give more time to the integrative part of the
controller to increase and eventually this amplifies the price oscillations.

Figure 8 shows the prices generated by a PI controller filtering either its
input or output by a 20-day moving average when facing a demand delayed
by δ = 20 days. The prices generated are not better and the oscillations are
deeper, regardless of the filter used. Stickiness and timidity work better than
filtering.

Figure 8: I compare here the effect of adding a 20-days moving average filter
to the input et or the output pt of a PI controller facing a 20 days delayed
demand. The filters do not improve the controller output and in fact increase
the amplitude of the price oscillations
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4 Firms and Production

In this section I expand the Zero-Knowledge methodology in two directions.
First I replace the previous section’s exogenous fixed daily inflow with endoge-
nous production targets. Second I allow the agent to act in multiple markets
at the same time, hiring workers while selling output. Assuming the agent
knows whether it is in a monopolist or competitive market the agents reach
the correct production levels and prices.

4.1 Independent PI controls coupled with simple marginal analysis can
simulate one-sector competitive and monopolist markets

Agents in this section produce their own goods for sale. These agents I call the
Zero-Knowledge Firms. In parallel they have to hire workers, buy inputs, and
price their output. They are price-makers when selling or setting wages and
price-takers when buying other inputs. Each price is set by an independent PI
controller as in section 3.1.

Production is linear with respect to workers hired Lt:

F (Lt) = Lt

The firm has to decide how many workers to hire. The simplest way to do so
is to raise production as long as:

Marginal Benefit > Marginal Cost

More precisely: a firm producing one type of good priced pt and consuming
labor as only input with unit wage wt maximizes the following profit function:

Πt = ptqt − wtqt

Where pt and wt are themselves function of production qt so that maximum
profits are achieved when:

p+ q
∂p

∂q
= w + q

∂w

∂q

Now define µp = ∂p
∂q the price impact of increasing production, that is by

how much sale price goes down when production goes up by one unit. Similarly
define µw = ∂w

∂q as the wage impact of increasing production, that is by how
much wages need to increase in order to hire enough workers to produce one
more unit of good. So that at any point in time we want to set the production
target such that:

pt + µpLt = wt + µwLt (4)

This is a decision rule for production targets that is based on daily prices pt
and wt which the PI controllers discover.

As shown in section 3.1 it takes some time for PI controllers to find the
correct prices. Because marginal benefits and costs are computed with PI



Sticky Price Microfoundations in a Agent-Based Supply Chain 15

prices, production decisions should be taken infrequently to give the controllers
time to be correct. In particular as long as pt + µpLt > wt + µwLt increase
production targets by 1 unit of output or lower it by 1 unit of output when
pt + µpLt < wt + µwLt

Define T as the decision period: how often, in days, the firm checks whether
to change production. It is set to 20 for all simulations. Much like with sticki-
ness s, T is also stochastic: there is a fixed chance of 1

T each day of choosing
a new production target.

The firm must also know what the price impacts µ are. I will deal with
their endogenous discovery in section 7. Until then I’ll simply assume they are
known. To a competitive firm, price impacts are always 0. To a monopolist,
price impacts equal the demand and supply slopes.

Take a firm facing the daily demand function: q = 102 − p, with daily
production function4 q = f(L) = L and wage curve w = 14 + L. A firm
acting as a monopolist would maximize profits by producing 22 units a day
and selling them at $80.

Figure 9 shows a sample run of a Zero-Knowledge monopolist firm. Notice
first that the monopolist starts producing after 250 days. This is the time it
takes for the PI controller setting wages to find the right wage for 1 worker
($15). Notice also that there is no noise once reaching equilibrium.

In perfect competition, equilibrium is a daily total production of 44 units
sold at $58. Figure 10 shows a sample run with 5 competitors. Multiple agents
create noisy results due to coordination failure. While each firm might see an
increase in production as profitable, the demand is not enough when all firms
increase production at the same time.

Notice that the number of firms competing is not important for the correct
result. If I run the model with a single firm with zero price impacts I will
get a noiseless perfect competitive solution. Perfect competition here is purely
a function of the internal production decision processes of the firm. In sec-
tion 7 though the firms will learn on their own their price impacts and having
competitors will force them to zero their price impacts.

4.2 Competitive markets micro-structure is more confusing than its
aggregate equilibrium suggests

Competitive scenarios with multiple agents, as in figure 10, achieve quasi-
equilibrium: prices and quantity hover around the equilibrium levels. However
the firms that compose this aggregate equilibrium are subject to more chaotic
dynamics. Each day there is usually a single price-leading firm that sells to
all the customers while the other firms sell nothing. This monopoly lasts only
for a day and a different price-leading firm caters to all the customers the day
after. This is in spite of the fact that each firm targets only a fraction of the
total production.

4 The demand and supply parameters here and in the following sections are chosen ex-
clusively so that the equilibrium is in natural numbers
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Figure 9: A sample run with a monopolist firm. It reaches the correct price
and quantity

More specifically each firm uses its PI controller to set their price each
day. One of the firms will by necessity price their goods slightly below the
others. Because of perfect competition that firm will attract all the customers
available. The firm will sell more than its targets burning through its buffer
inventory. The day after the firm that sold too much will increase its price (as
dictated by its PI controller) while all the other firms will lower theirs since
they didn’t hit their target. A new firm then takes the pricing lead and the
cycle starts over.

At its core, this is an information asymmetry problem. Firms know nothing
of other firms while customers know everything about them. So that when a
firm drops its price the customers react immediately while competitors can
only do so after their consumer base has vanished. It is a dynamic that is
enabled by the existence of inventories firms can dip into. With no inventories
the price-leading firms would only be able to supply a limited quantity of
goods and multiple daily prices would emerge.

More generally perfect competition is the hardest market structure to
model through trial and error pricing. The more market power a firm has,
the more informative trial and error pricing is. Small changes in prices for a
monopolist generates small changes in quantity demanded, but small changes
in prices in a perfect competitive market sometimes generate large swings in
demand and sometimes no change at all. But I believe it is important to show
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Figure 10: A sample run with a 5 competitive firms. There is noise but centered
around the correct price and quantity.

that even in the worst case scenario for trial and error Zero-Knowledge traders
still get to the equilibrium successfully albeit only in an aggregate sense.

For the rest of the paper I will continue using multiple agents within the
same competitive market in spite of the noise and the fact that they could
be replaced by a single agent forced to act competitively, that is with price
impacts µ = 0. This is because when I allow agents to learn price impacts
in section 7 there need to be more than one for them to act competitively.
Adding multiple agents only from that section on would generate two kinds
of noises at once: competition and learning and that would make comparison
between learning and non-learning agents impossible.

5 Supply Chains

I place the Zero-Knowledge firms of the previous section in a supply chain.
Because it takes time for firms downstream to change production targets, firms
upstream face a delayed demand similar to section 3. Much like that section,
the trial and error pricing creates oscillations and fails to reach equilibrium.
Much like that section, price-stickiness solves such issues.
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5.1 Zero-knowledge firms in a supply chain create endogenous delays that
break the model

Take a supply chain made of two sectors: wood and furniture. There is a final
daily demand for furniture which is exogenous and fixed at:

qF = 102− pF

Daily production of one unit of furniture requires one worker and consumes
one unit of wood:

qF = min(LF , qW )

Daily production of one unit of wood requires one worker.

qW = LW

Each sector has its own independent linear labor supply:

wW = LW

wF = LF

Helpfully, there are infinite trees waiting to be cut.
In this section further assume that the wood sector is monopolized while

the furniture market is competitive. I go through all the market-structure per-
mutations in section 6. Solving for the market equilibrium yields the following:

qF = qW = 17 (5a)

wW = wF = 17 (5b)

pW = 68 (5c)

pF = 85 (5d)

The theoretical demand for wood from the furniture sector is:

pW = 102− 2qW (6)

What I will do next is the following: I will find the best PI parameters
that would deal the demand in equation 6 if it were a single independent
market. I will then show how such parameters do not reach equilibrium in a
supply-chain. Finally I will show that adding timidity and sticky prices solve
the oscillations and achieve the market equilibrium.

Figure 11 shows the parameter sweep for the optimal PI controller of a
monopolist facing the undelayed demand function 6; for each parameter I
show the average simulated log10 sum squared errors. The parameters with
the lowest error are a = 0 and b = 2. This makes sense since 2 is the slope of
the demand curve.

I have shown that a = 0, b = 2 are the optimal PI parameters for the
wood producer when facing the fixed demand in equation 6. Now I let the
same PI controller face the same wood demand but this time it is generated



Sticky Price Microfoundations in a Agent-Based Supply Chain 19

Figure 11: The average squared distance from correct prices when a monopolist
faces demand p = 102 − 2q and labor supply w = L. Each cell represents a
pair of parameters used by the monopolist’s sales PI control. The optimal
parameter pair is predictably a = 0, b = 2 reflecting the underlying demand.

by a downstream market sectors made up of other Zero-Knowledge firms. The
effects are shown in figure 12. Far from being optimal, neither production nor
prices ever reach equilibrium and prices -especially for wood- oscillate.

The parameters that were optimal when facing an exogenous demand prove
too aggressive when the same demand is made up of other Zero-Knowledge
firms. The issue is delay. It takes time for furniture producers to notice new
wood prices and change their production. By the time furniture consumers ad-
just, the producer has changed the sale price again. These delays downstream
feed into the upstream trial and error loop. The wood price swings from 0 to
over 100 because the wood monopolist’s netflow reacts slowly to changes in
prices.

Table 1 shows the decisions made by the PI controller setting the prices
of the wood producer from day 1437 to 1445 and shows what causes the price
swings. The root cause is the difference between what is produced and what is
consumed. The wood producer is producing 15 units of wood a day but only
sells 8 or 9. In fact the wood producer is targeting an even higher production
of 16 because the prices are still very high. The PI controller has to find
a price such that it can sell all 15 units of good; as a matter of fact that is
impossible to do so in a short amount of time because the production decisions
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Figure 12: A sample run of the supply chain model using the PI parameters
that were optimal when the demand was immediately reacting.

downstream respond to prices too slowly . Notice that the PI controller here
is just pt+1 = 2

∑t
i=0 ei so the value of the first column (pt) is just the twice

the value on the last column (
∑
ei).

Table 1: The price and production decision of the wood producer in figure 12
from days 1437 to 1445

Day pt Target Production Production Sales et
∑

ei

1437 94 16 15 10 -5 47
1438 82 16 15 9 -6 41
1439 70 16 15 9 -6 35
1440 58 16 15 9 -6 29
1441 46 16 15 9 -6 23
1442 34 16 15 9 -6 17
1443 22 16 16 9 -7 10
1444 6 16 16 8 -8 2
1445 0 16 16 8 8 -6

The PI controller is aggressively cutting prices but these have very little
effects in the short run. Eventually low prices do increase demand downstream
and decrease production upstream but by then the prices are at a level too
low (0$ in fact) and demand outstrips supply (with inventories being bought
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instead). This mismatch between the speed of production adjustment and price
adjustment is why equilibrium is not achieved. It is clear that prices need to
adapt more slowly.

Figure 13 shows a second example, this time with timidity z = 10. This
is the same as lowering the b parameter from 2 to 0.2. The equilibrium is not
achieved and the oscillations are still present. I will now show how adding price
stickiness improves the dynamics.

Figure 13: A sample run of the supply chain model using the PI parameters
that are 10 times more timid than the optimal.

5.2 Adding price-stickiness to the upstream firm restores equilibrium

Take the previous PI controller add both a timidity z = 10 and a price stick-
iness of s = 50 days. As figure 14 shows, these parameters are enough to fix
the supply chain: production and prices in both sectors are the correct ones
and remain in equilibrium. This is because now prices change slowly enough
for production to fully adapt to them.

Sticky prices eliminate bullwhip effects the same way they dealt with ar-
bitrary demand delays in section 3.3. The difference is that in section 3.3 the
delays were exogenous as I added them just to show how to deal with them. In
this section instead there is a demand delay but it is caused by the interaction
between upstream and downstream firms.
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Figure 14: A sample run of the supply chain model where the wood producer
uses sticky prices.

There are two endogenous sources of delays in the supply chain. The first
delay is the time it takes between a firm making the decision to change its
production quota and the controllers adapting to it by finding new wages
and prices. The second delay source is the decision period T of the furniture
producers (how quickly they change production targets given current prices)
which delays their response to change in prices of the wood supplier. The
larger T downstream the higher the upstream price stickiness s need to be to
balance. Figure 15 shows the relationship between the stickiness s and T .
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Figure 15: The decision period T (in days) of firms is an important source of
delays in the system; the higher T the higher the price stickiness needs to be
in order to balance it. Each tile represents a 5-runs average squared distance
from the correct price over the whole run.

6 Market Structure

In this section I go through the market structure permutations to show how
the Zero-Knowledge firms can adapt to it and reach equilibrium. All these
simulations use the same price stickiness as in the previous section.

In equation 5 I expressed the solution where the wood sector is a monopolist
while the furniture sector is competitive. If the wood sector is competitive while
the furniture is monopolistic the equilibrium is:

qF = qW = 17 (7a)

wW = wF = 17 (7b)

pW = 17 (7c)

pF = 85 (7d)

If both sectors are competitive the no-profit equilibrium should be:

qF = qW = 34 (8a)

wW = wF = 34 (8b)

pW = 34 (8c)

pF = 68 (8d)
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I run 100 simulations for each market structure (competitive means 5 firms
in the same sector). Each simulation runs for 15000 market days. Firm have
an inventory buffer of 100, regardless of market structure. All input producers
use sticky prices (50 days each price change), regardless of market structure.

In general the model behaves as predicted by theory. Figure 16 shows the
distribution of input prices at the end of the simulation; figure 17 shows the
output prices; figure 18 shows the quantity produced.

Figure 16: The price of wood (first sector) for 300 simulated runs, 100 for each
market structure. The vertical dashed lines represent the theoretical equilib-
rium. Each datum in the histogram is the price on the last day of the simula-
tion.
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Figure 17: The price of furniture (second sector) for 300 simulated runs, 100
for each market structure. The vertical dashed lines represent the theoretical
equilibrium. Each datum in the histogram is the price on the last day of the
simulation.
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Figure 18: The units of furniture produced daily at the end of 300 simulated
runs, 100 for each market structure. The vertical dashed lines represent the
theoretical equilibrium. Each datum in the histogram is the production on the
last day of simulation.
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7 Learning Price Impacts

The results from section 4 depends on the firms knowing whether they are in
a monopolist or competitive market. In this section I remove this assumption
by allowing firms to learn on their own the price impacts they face. Learning
produces noise compared to the results in the previous section, but the equi-
librium quantities and prices are comparable. The only exogenous constraint
remaining in this section is that upstream firms use sticky prices.

7.1 Regressing workers on price works well in a one-sector economy

A Zero-Knowledge firm should be able to learn its own market power. In
previous sections the price impacts were given, now firms discover them.

The firm takes the price generated by its PI controls and regresses it against
number of workers. The regression identifies how much increasing production
changes prices. Zero-Knowledge firms use two regressions side by side. First,
they fit one-step error correction regression model (Banerjee, Dolado, Gal-
braith, & Hendry, 1993):

∆pt = β0 + β1∆Lt + β2pt−1 + β3Lt−1 + ε (9)

Where p is price and L are workers hired. The firm identifies the long run
relationship between the two variables and use it as approximate price impact:

µp = −β3
β2

The second regression is the linear model

pt = γ0 + γ1L+ ε (10)

Where the price impact discovered is:

µp = γ1

Each day the Zero-Knowledge firm selects the regression that better pre-
dicts today’s price. If a firm trades in multiple markets (for example selling
furniture, buying wood and hiring workers) then it has multiple regression
pairs, each focusing on predicting one price (output price, input price, wages).
For the input markets where the firm is a price-taker the paid price is used in
lieu of the PI one.

Because the PI controls generate one observation each day in each mar-
ket it makes sense to implement the regressions by a Recursive Least Squares
filter(Welch & Bishop, 1995). Take as example Equation 9. It has four param-
eters: β = (β0, β1, β2, β3). Each day the firm observes the price offered, the
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labor hired and their lags yt = ∆pt,xt = (1, ∆Lt, pt−1, Lt−1). The current es-

timation of β is β̂t−1 =
(
β̂0t−1, β̂1t−1, β̂2t−1, β̂3t−1

)
. Update it with the new

observation in four steps:

k = Pt−1x
T
(
xPt−1x

T + 1
)−1

Constructing the Kalman gain (11a)

εt = yt − xβ̂t−1 Finding the prediction error (11b)

β̂t = β̂t−1 + kεt Updating predictor given error (11c)

Pt = (I − kxt)Pt−1 Updating covariance matrix (11d)

Where Pt is the 4× 4 covariance matrix. Functionally P0 is a Bayesian prior
which I set at 104I for all simulations.

Figure 19 and figure 20 show the results of running 100 simulations with
a learning monopolist and 100 simulations with 5 learning competitors. Firms
learn their market power correctly, which involves learning whether they are
a monopolist or not and if they are what the slope of the demand actually is.

Figure 19: The histogram of prices from running 100 monopolist and 100
competitive (5 firms) scenarios. All firms need to learn the price and wages
impact. All firms target inventory (100 units of output). Each observation in
the histogram is the price on the last day of the simulation
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Figure 20: The histogram of simulated production obtained by running 100
monopolist and 100 competitive (5 firms) scenarios. All firms need to learn
the price and wages impact. All firms have a buffer inventory (100 units of
output). Each observation in the histogram is the production on the last day
of simulation

7.2 Learning in a supply-chain is harder and less effective

Learning is far more problematic in a supply-chain. First, if there is a delay δ
between setting a price pt and it affecting quantity traded, the Zero-Knowledge
firm should regress pt−δ over Lt. But this is impossible as the delay is unknown.
Secondly, because of stickiness, the firm often sets prices pt that are not the
market clearing ones. Because learning works by regressing paired pt and Lt,
the results are often useless. Figures 21, 22, 23 show the results of 100 sim-
ulations for each market structure. All are using buffer inventory and sticky
prices. The results are far more dispersed, usually because one of the recursive
least squares filters failed to learn the correct slope.

7.3 Circular causality and passivity are the main learning weaknesses

The error-correcting model assumes that labor determines prices. That is true
as the PI control reacts to increased production by lowering prices. But pro-
duction also responds to prices as firms fire workers when sale prices fall.
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Figure 21: The price of wood (first sector) for 300 simulated runs, 100 for each
market structure. The dashed vertical lines represent the theoretical equilib-
rium. Each datum in the histogram is the price on the last day of the simulation

Circular causality is exacerbated by the regression itself since the slope found
is part of the profit maximization function linking the two variables.

The root cause of this confusion is that agents are passive learners when it
comes to price impacts. Zero-Knowledge firms observe long time series of prices
and production and try to make sense of them. What these firms never do is
willfully experiment with wrong prices. Firms never try to double prices to see
the effect on demand or increase production beyond the optimal level to test
their estimated labor supply slope. Agents are, in meta-heuristics term, greedy.
They always exploit current knowledge and never explore. This I believe is in
line with how learning is usually modeled in economics (Evans & Honkapohja,
2009) but it is probably an assumption that should be dropped in future
papers.
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Figure 22: The price of furniture (second sector) for 300 simulated runs, 100
for each market structure. The dashed vertical lines represent the theoretical
equilibrium. Each datum in the histogram is the price on the last day of the
simulation.
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Figure 23: The units of furniture produced daily at the end of 300 simulated
runs, 100 for each market structure. The dashed vertical lines represent the
theoretical equilibrium. Each datum in the histogram is the production on the
last day of the simulation.
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8 Learning stickiness

In this section I remove a further assumption on firms behavior. I introduced
stickiness s in section 3.3 but I always set it exogenously: firms would either
have stickiness or not. In this section s emerges endogenously by providing the
firm with a way of setting it on its own.

The firm needs to change the stickiness parameter of its PI controller while
it is in use. This is the domain of adaptive control (Landau, Lozano, M’Saad,
& Karimi, 2011). In this case too Zero-Knowledge firms act by trial and error.

The first step involves defining a performance metric to judge controllers
and their parameters. Here I use the integral time absolute error (ITAE) per-
formance index (Shinners, 1998):

M∑
i=1

i |êt−M+i| (12)

The lower the ITAE the more precise the controller. M is the time horizon and
the error et is the PI error as defined in equation 1. The performance index
simply states that PIs are better parameterized if the system is on target and
being on target in the long run matters more than in the short run.

In this paper I only focus on the stickiness parameter: how many days
pass between each adjustment by the PI controller. I modify this parameter
by simple hill-climbing (Luke, 2009). Zero-Knowledge firms set a stickiness
and test it for M = 100 days. If it has better performance than the previous
stickiness then we keep it otherwise we revert back to the previous one. This
process loops forever.

A sample run where the firm tunes its stickiness is in figure 24. The firm
starts tuning its stickiness after 1000 days, it changes stickiness in steps of 5.
In this run there is a first abortive attempt at sticky prices at around day 2000.
The experiments fail because prices get sticky while out of equilibrium which
cause poor performance. After reaching equilibrium stickiness stops mattering
which results in the stickiness parameter bouncing between 20 and 25 days.

The tuning process could be improved by making learning forward-looking.
This is generally called indirect adaptive control. The idea is to fit process data
to a statistical model and then estimate performance by treating the fitted
model as the real one. The issue is usually to find the right statistical model.
See paper 12 of Landau et al. (2011) for a primer on the field. Hill-climbing
bypasses that by experimenting directly over the real system.
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Figure 24: A sample run where the firm starts selling with a non-sticky PI
controller b = 0.2. We start tuning after 1000 days. Time horizon M is 100
days.

9 Fitting Zero-Knowledge Traders to Data

In this section I show how to fit PI controllers to datasets and how to use my
model empirically. The data quality required is unfortunately high.

While PI controllers aren’t used directly to price goods in the economy
we might want to estimate what are the best PI parameters that simulate
empirical pricing. We need two time series, the price set by the controller and
the error the controller reacted to. The standard technique to fit a PI controller
to data is to turn it into a velocity form (Åström & Hägglund, 1995) where
the PI formula becomes:

∆ut = αet + βet−1 + γet−2

Which can then be fitted through ordinary least squares (OLS).

I am not pursuing that strategy here because it is brittle: OLS fails once I
add windup stop or any other modification to the general PI controller. I fit
the PI parameters by simulation instead. I start with a random vector of PI
parameters a, b and then generate the simulated policy time series p̃t given the
error time series et. Finally I compare the simulated time series with the real
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policy time series pt and record the absolute simulated error:

ε =

T∑
i=1

|p̃i − pi|

This gives us a mapping (a, b) → εa,b which we can plug in any optimizing
routine to find what parameters (a, b) minimize the absolute simulated error ε

A simple example would be fitting the European Central Bank deposit rate
as if set by a PI controller trying to keep unemployment rate at 8%. The error
time series et is then the difference between unemployment rate and 8% while
the policy time series pt is the deposit rate. The result is shown in figure 25.
The PI controller has a strong proportional component and a weak integral.
This matches the Taylor rule approach which is fundamentally P only.

Figure 25: A comparison between ECB rates and the rate simulated by a PI
controller targeting unemployment at 8%. The parameters are a = 0.94 and
b = 0.0005

In reality central banks target both unemployment and inflation at the
same time. Hawkins, Speakes, and Hamilton (2014) fits a PI controller tar-
geting both (using potential output gap rather than unemployment) to the
US central bank and compares the fit favorably with traditional Taylor rules
estimations.

For the fit to be informative the data needs to be of high quality. If the
time density is too coarse or we use aggregate market data the fit will be
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meaningless. As an example, imagine a PI controller setting rents in the United
States. Take as error time series et the monthly rental vacancy rate and as price
series pt the real rent rate (more precisely the urban rent CPI divided by the
general CPI). I show the fit in figure 26

Figure 26: The real urban rental rate in the US and the closest PI output when
targeting 8% vacancy rate. Notice that the PI parameters are a = −0.0013
and b = −0.00038, that is rent goes up when vacancy rate goes up

While the fit might look acceptable the PI parameters are negative. This
means that the best PI fit has rent go up when vacancy are high. Rather
than capturing owners lowering rent to deal with vacancies I am capturing
new rooms being made available when rents are high enough. I replicated the
circular causality problem of section 7.3 where over large periods of time (in
this case months) two processes occur: prices decline when demand is low
but eventually production also declines because of low prices. For the housing
market while it is possible that rents decline while vacancies are high it is
also true there will be less houses on the market while rents are low. The
overall correlation between monthly rent and monthly vacancies could then be
of either sign.

What is needed is firm-level, high frequency data. A data that is firm-level
but is not high frequency nor has enough observation is the free supermarket
data from Aguirregabiria (1999). There are 529 goods, each with 29 observa-
tions, one per month. The problem with non central banks data is to figure
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Table 2: 10 best PI Fits for the Wholesale Price

dart aParam bParam margin
SIRO MARIA 400 GRS. -0.000708 0.005561 34.68966
AGUA SOLARES 250 C.C PAK 6 0.000865 0.000000 74.72056
PERA HERO ALMIBAR 450 GRS. -0.011320 0.022337 90.79018
VINO OLARRA OTOAL 87 ROSADO -0.002209 0.014678 93.63590
BAYETA VILEDA SUELOS -0.001862 0.002559 96.65143
PAN LU DE PUEBLO 24 REBANAD. -0.010047 0.010692 115.45256
LENTEJA ASTURIANA PARDINA KG -0.001683 0.003155 120.79976
PIMI. VELA PICO LTA. 175 GRS -0.000475 0.002262 121.79440
FONTANEDA EL COLEGIAL 800 GR -0.023865 0.039007 124.33759
BOLSA BASURA 25 UND. RF.1007 0.000013 0.000000 126.79908

out what the PI target and the errors are. This is particularly complicated in
this data-set because of the presence of inventories, returns and the lack of
information on the manufacturers themselves. For this data-set, I use as PI
policy pt the wholesale price, and as PI error the difference between orders
placed by retailers to the wholesaler and the orders placed by the wholesaler
to the manufacturers. This is sub-optimal because it ignores customer returns
and inventory targets, but it is a simple proxy for what must be the sales
targets.

Table 2 shows the 10 best PI fits. In some cases, the P parameter is negative,
but it is always the case a is smaller than the b parameter so that there is the
PI controller never operates in ’reverse’. The median simulated error ε is 416.48
Pt, so wrong by about 14 Pt a month. An example of the sucessful fit (ε ≈ 200)
is shown in figure 27.

The main weakness of my estimations is that the simulated estimated error
ε is computed over training data. A better approach, especially when compar-
ing different model fits, would be to compute ε by cross-validation or training
data. This was not feasible for these examples because the testing data of the
European Central Bank would have been the rates during the crisis which are
set more aggressively than the training data would suggest while the wholesale
data is too small to afford it being cut into training and testing.
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Figure 27: The comparison between PI controller and actual wholesale prices
of 30 meters of Reynolds aluminum foil

10 Conclusion

In this paper I showed how trial and error pricing creates bullwhip effects and
how sticky prices can fix them. This allowed agents that are too simple to
centralize information to coordinate over market prices. I also showed how the
result is robust to market structure and knowledge assumptions about price
impacts µ and price stickiness s. I believe this paper represents an example of
how focusing on interactions and agent-based models can provide new answers
and hypotheses to old questions. It is a methodology that allows for expressing
and examining time and trading rules’ minutiae easily.

There are two paths I can take with this model. The first is improving its
overall realism, probably by adding more feedforward elements. Agents here
are purposefully simple as a way to show how little is required for markets to
coordinate. A better agent would use more data: here agents weren’t allowed
to even look at competitors’ prices. If they use more data artifacts such as
those described in section 4.2 would disappear as firms would be on the same
level as their consumers. A better agent would also be able to auto-tune its
PI parameters during the simulation. I did tune stickiness s in section 4.2 but
the process could be generalized to a and b as well.

The second path I can take with this model is to use it as it is with different
market structures. I have shown that the Zero-Knowledge firm works well in a
monopolist environment because trial and error is at its most informative when
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the agent is alone. Viceversa I have shown that in a competitive environment
trial and error is at its least informative because of the noise generated by the
competition and the ease of the customer base to switch providers. I think the
Zero-Knowledge agent would thrive in a point between these two extremes.
I believe that monopolistic competition, a market where each agent has only
partial market power and information is too dispersed for game theory to
apply, is the obvious next step.
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